Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 149]
|
|
Сложность: 4- Классы: 8,9,10
|
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Три окружности проходят через точку P, а вторые точки их пересечения A, B, C лежат на одной прямой. A1, B1, C1 – вторые точки пересечения прямых AP, BP, CP
с соответствующими окружностями. C2 – точка пересечения
прямых AB1 и BA1. A2, B2 определяются аналогично.
Докажите, что треугольники A1B1C1 и A2B2C2 равны.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Две окружности пересекаются в точках P и Q. Из точки Q пустили в каждую из окружностей по одному лучу, которые отражаются от окружностей по закону "угол падения равен углу отражения". Точки касания траектории первого луча – A1, A2, ..., второго – B1, B2, ... . Оказалось, что точки A1, B1 и P лежат на одной прямой. Докажите, что тогда все прямые AiBi проходят через точку P.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.
Три окружности имеют общую точку M и попарно пересекаются в
точках P, Q, R. Через произвольную точку A одной из
окружностей, лежащую на дуге PQ, не содержащей точки M, и
точки P и Q, в которых окружность пересекает две другие
окружности, проведены прямые, пересекающие эти же две
окружности в точках B и C. Докажите, что точки B, C и
R лежат на одной прямой.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 149]