ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 152]      



Задача 105182

Темы:   [ Тетраэдр (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10,11

Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?

Прислать комментарий     Решение

Задача 116186

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Задача 73581

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Выпуклые многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 7,8,9

Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
Прислать комментарий     Решение


Задача 53618

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

На прямой расположены три точки A, B и C, причём  AB = BC = 3.  Три окружности радиуса R имеют центры в точках A, B и C.
Найдите радиус четвёртой окружности, касающейся всех трёх данных, если   а)  R = 1;   б)  R = 2;   в)  R = 5.

Прислать комментарий     Решение

Задача 65058

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .