ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать, что из этих гирь нельзя составить более 1230 различных по массе наборов.
В выпуклом четырехугольнике ABCD диагонали AC и BD равны соответственно a и b. Точки E, F, G и H являются соответственно серединами сторон AB, BC, CD и DA. Площадь четырёхугольника EFGH равна S. Найдите диагонали EG и HF четырёхугольника EFGH.
Рассеянный Ученый сконструировал прибор, состоящий из датчика и передатчика. Средний срок (математическое ожидание) службы датчика 3 года, средний срок службы передатчика 5 лет. Зная распределения срока службы датчика и передатчика, Рассеянный Ученый вычислил, что средний срок службы всего прибора равен 3 года 8 месяцев. Не ошибся ли Рассеянный Ученый в своих расчетах? В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС. В квадрате со стороной 1 находится 51 точка.
Докажите, что какие-то три из них можно накрыть кругом
радиуса 1/7.
|
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 1224]
Для чисел а, b и с, отличных от нуля, выполняется равенство: a²(b + c – a) = b²(c + a – b) = c²(a + b – c). Следует ли из этого, что а = b = c?
На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Докажите, что 1n + 2n + ... + (n – 1)n делится на n при нечётном n.
Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке