ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Даны отрезки a и b. Постройте такой отрезок x, что
p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1. На какое наименьшее число тетраэдров можно разбить куб? Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности? Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны. Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников? Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку. В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар. Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.
Углы при основании AD трапеции ABCD равны 2
Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.
Как в треугольнике ABC провести ломаную BDEFG (см. рисунок), чтобы все пять полученных треугольников имели одинаковые площади?
В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°. В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой, AB : BC = 3 : 4.
Две стороны треугольника равны 2
Через середины M и N рёбер соответственно AA1 и C1D1 параллелепипеда ABCDA1B1C1D1 проведена плоскость параллельно диагонали BD основания. Постройте сечение параллелепипеда этой плоскостью. В каком отношении она делит диагональ A1C ? |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 330]
Треугольник ABC равнобедренный (AB = BC). Точка M – середина стороны AB, точка P – середина отрезка CM, точка N делит сторону BC в отношении 3 : 1 (считая от вершины B). Докажите, что AP = MN.
Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции.
Через точку на стороне треугольника проведена прямая, параллельная другой стороне, до пересечения с третьей стороной треугольника. Через полученную точку проведена прямая, параллельная первой стороне треугольника и т.д. Докажите, что
Два равносторонних треугольника ABC и CDE расположены по одну сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.
Через точку P, лежащую на медиане CC1 треугольника ABC, проведены прямые AA1 и BB1 (точки A1 и B1 лежат на сторонах BC и CA соответственно).
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке