Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 330]
|
|
Сложность: 3+ Классы: 7,8,9
|
Треугольник ABC равнобедренный (AB = BC). Точка M – середина стороны AB, точка P – середина отрезка CM, точка N делит сторону BC в отношении 3 : 1 (считая от вершины B). Докажите, что AP = MN.
Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции.
Через точку на стороне треугольника проведена прямая, параллельная другой стороне, до пересечения с третьей стороной треугольника. Через полученную точку проведена прямая, параллельная первой стороне треугольника и т.д. Докажите, что
а) если исходная точка сопадает с серединой стороны треугольника, то четвёртая точка, полученная таким способом, совпадёт с исходной;
б) если исходная точка отлична от середины стороны треугольника, то седьмая точка, полученная таким способом, совпадёт с исходной.
Два равносторонних треугольника ABC и CDE расположены по одну
сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.
Через точку P, лежащую на медиане CC1 треугольника ABC, проведены прямые AA1 и BB1 (точки A1 и B1 лежат на сторонах BC и CA соответственно).
Докажите, что A1B1 || AB.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 330]