ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 141 142 143 144 145 146 147 >> [Всего задач: 829]      



Задача 54386

Темы:   [ Ромбы. Признаки и свойства ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

На продолжении стороны AD ромба ABCD за точку D взята точка K. Прямые AC и BK пересекаются в точке Q. Известно, что  AK = 14  и что точки A, B и Q лежат на окружности радиуса 6, центр которой принадлежит отрезку AK. Найдите BK.

Прислать комментарий     Решение

Задача 54659

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В прямоугольный треугольник с катетами 6 и 8, вписан квадрат, имеющий с треугольником общий прямой угол. Найдите сторону квадрата.

Прислать комментарий     Решение

Задача 54794

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
[ Неравенство треугольника (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В трапеции с основаниями 3 и 4 диагональ равна 6 и является биссектрисой одного из углов. Может ли эта трапеция быть равнобедренной?

Прислать комментарий     Решение

Задача 54795

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
[ Композиции симметрий ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции диагональ равна 8 и является биссектрисой одного из углов.
Может ли одно из оснований этой трапеции быть меньше 4, а другое равно 5?

Прислать комментарий     Решение

Задача 54844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Найдите AC, если известно, что  AM = 4,  BN = 9.

Прислать комментарий     Решение

Страница: << 141 142 143 144 145 146 147 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .