Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении  AO : OC = 3 : 2.  Найдите площадь треугольника OEC.

Вниз   Решение


Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение  

ВверхВниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

ВверхВниз   Решение


Круг разделен на 6 секторов и в них по часовой стрелке расставлены числа: 1, 0, 1, 0, 0, 0. Разрешается прибавить по единице к числам в любых двух соседних секторах. Можно ли такими операциями добиться того, чтобы все числа в секторах были одинаковыми?

ВверхВниз   Решение


В основании треугольной пирамиды NKLM лежит правильный треугольник KLM . Высота пирамиды, опущенная из вершины N , проходит через середину ребра LM . Известно, что KL = a , KN = b . Пирамиду пересекает плоскость β , параллельная рёбрам KN и LM . На каком расстоянии от вершины N должна находиться плоскость β , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?

ВверхВниз   Решение


Бумажная прямоугольная полоска помещается внутри данного круга. Полоску согнули (не обязательно пополам). Докажите, что после сгибания полоску можно также разместить в этом круге.

ВверхВниз   Решение


Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

ВверхВниз   Решение


Трапеция AEFG  (EF || AG)  расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG перпендикулярны,  EG = 10.  Найдите периметр трапеции.

ВверхВниз   Решение


Известно, что число 2n для некоторого натурального n является суммой двух точных квадратов.
Докажите, что n также является суммой двух точных квадратов.

Вверх   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 165]      



Задача 111899

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
Сложность: 3
Классы: 6,7,8

Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Прислать комментарий     Решение

Задача 54740

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9

В деревне у прямой дороги с интервалами в 50 метров стоят четыре избы A, B, C и D. В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

Прислать комментарий     Решение

Задача 66138

Темы:   [ Вписанные и описанные окружности ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Неравенство треугольника (прочее) ]
[ Связь величины угла с длиной дуги и хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

Прислать комментарий     Решение

Задача 78133

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны точки A и B. Построить такой квадрат, чтобы точки A и B лежали на его границе и сумма расстояний от точки A до вершин квадрата была наименьшей.
Прислать комментарий     Решение


Задача 104098

Темы:   [ Симметрия помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .