ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись? Какую наименьшую ширину должна иметь бесконечная полоса бумаги,
из которой можно вырезать любой треугольник площадью 1?
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O. Высоты AA1, CC1 треугольника ABC пересекаются в точке H. HA – точка симметричная H относительно A. HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что A'C' || AC. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]
Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.
Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?
Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.
Какую наименьшую ширину должна иметь бесконечная полоса бумаги,
из которой можно вырезать любой треугольник площадью 1?
В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке