Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 401]
Даны две точки
A и
B и окружность
S . С помощью циркуля и
линейки постройте окружность, проходящую через точки
A и
B и
касающуюся окружности
S .
|
|
Сложность: 5 Классы: 8,9,10
|
Правильный пятиугольник
ABCDE со стороной
a вписан в
окружность
S. Прямые, проходящие через его вершины перпендикулярно
сторонам, образуют правильный пятиугольник со стороной
b (см. рис.).
Сторона правильного пятиугольника, описанного около окружности
S,
равна
c. Докажите, что
a2 +
b2 =
c2.
|
|
Сложность: 5 Классы: 8,9,10
|
Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
Противоположные стороны четырёхугольника, вписанного в
окружность, пересекаются в точках P и Q. Найдите PQ,
если касательные к окружности, проведённые из точек P и
Q, равны a и b.
|
|
Сложность: 3- Классы: 8,9,10
|
Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 401]