|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Каждый катет прямоугольного треугольника увеличили на единицу. Могла ли его гипотенуза увеличиться более, чем на |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 355]
На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.
В выпуклом четырёхугольнике ABCD ∠A = ∠В = 60° и ∠СAВ = ∠CBD. Докажите, что AD + CB = AB.
Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что BL = СМ. Докажите, что треугольник LMK – также прямоугольный равнобедренный.
В выпуклом четырёхугольнике ABCD выполнены соотношения AB = BD, ∠ABD = ∠DBC. На диагонали BD нашлась такая точка K, что BK = BC.
Смешарики живут на берегах пруда в форме равностороннего треугольника со стороной 600 м. Крош и Бараш живут на одном берегу в 300 м друг от друга. Летом Лосяшу до Кроша идти 900 м, Барашу до Нюши – тоже 900 м. Докажите, что зимой, когда пруд замёрзнет и можно будет ходить прямо по льду, Лосяшу до Кроша снова будет идти столько же метров, сколько Барашу до Нюши.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 355] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|