Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 420]
|
|
|
Сложность: 3+ Классы: 10,11
|
Пусть |x1| ≤ 1 и
|x2| ≤ 1. Докажите неравенство 
|
|
|
Сложность: 3+ Классы: 9,10,11
|
У чисел 1000², 1001², 1002², ... отбрасывают по две последние цифры. Сколько первых членов полученной последовательности образуют арифметическую прогрессию?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
Докажите, что p(x) можно представить в виде многочлена от (x – a/2)².
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли кусочно-линейная функция f, определённая на отрезке [–1, 1] (включая концы), для которой f(f(x))= – x при всех x?
(Функция называется кусочно-линейной, если её график есть объединение
конечного числа точек и интервалов прямой; она может быть разрывной.)
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 420]