|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Окружность ω, вписанная в остроугольный неравнобедренный треугольник ABC, касается стороны BC в точке D. Пусть точка I – центр окружности ω, а O – центр описанной окружности треугольника ABC. Описанная окружность треугольника AID, пересекает вторично прямую AO в точке E. Докажите, что длина отрезка AE равна радиусу окружности ω. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|