Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На сторонах AB и AC равностороннего треугольника ABC выбраны точки P и R соответственно так, что  AP = CR.  Точка M – середина отрезка PR.
Докажите, что  BR = 2AM .

Вниз   Решение


Натуральное число n называется хорошим, если после приписывания его справа к любому натуральному числу получается число, делящееся на n. Запишите десять хороших чисел, которые меньше чем 1000.

ВверхВниз   Решение


Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.

ВверхВниз   Решение


Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности, касающаяся меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.

ВверхВниз   Решение


а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.

ВверхВниз   Решение


Автор: Белухов Н.

Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.

ВверхВниз   Решение


Доказать, что если  a1a2a3 ≤ ... ≤ a10,  то   1/6 (a1 + ... + a6) ≤ 1/10 (a1 + ... + a10).

ВверхВниз   Решение


Дана трапеция ABCD, в которой  BC = a,  AD = b.  Параллельно основаниям BC и AD проведена прямая, пересекающая сторону AB в точке P, диагональ AC в точке L, диагональ BD в точке R и сторону CD в точке Q. Известно, что  PL = LR.  Найдите PQ.

ВверхВниз   Решение


Через центр окружности  ω 1 проведена окружность  ω 2; A и B — точки пересечения окружностей. Касательная к окружности  ω 2 в точке B пересекает окружность  ω 1 в точке C. Докажите, что AB = BC.

ВверхВниз   Решение


Детектив Ниро Вульф расследует преступление. В деле замешаны 80 человек, среди которых один – преступник, еще один – свидетель преступления (но неизвестно, кто это). Каждый день детектив может пригласить к себе одного или нескольких из этих 80 человек, и если среди приглашенных есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. Может ли детектив заведомо раскрыть дело за 12 дней?

ВверхВниз   Решение


Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по данным серединам двух его сторон и прямой, на которой лежит биссектриса, проведённая к одной из этих сторон.

Вверх   Решение

Задачи

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1222]      



Задача 98063

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
Сложность: 3
Классы: 6,7,8

Автор: Фомин С.В.

Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.

Прислать комментарий     Решение

Задача 98167

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Автор: Борисов Л.

Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их произведение.
– Если бы я знал, – сказал С., – что твоё число больше, чем моё, я бы сразу назвал три искомых числа.
– Мое число меньше, чем твоё, – ответил П., – а искомые числа ..., ... и ... .
Какие числа назвал П.?

Прислать комментарий     Решение

Задача 98472

Темы:   [ Куб ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 9,10,11

На двух противоположных гранях игрального кубика нарисовано по одной точке, на двух других противоположных – по две точки, и на двух оставшихся – по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из его шести граней.
Могли ли получиться шесть последовательных чисел?

Прислать комментарий     Решение

Задача 98508

Темы:   [ Процессы и операции ]
[ Теория алгоритмов ]
[ Обратный ход ]
Сложность: 3
Классы: 8,9

Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

Прислать комментарий     Решение

Задача 102828

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Замена переменных ]
Сложность: 3
Классы: 7,8

Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Прислать комментарий     Решение

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .