ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два бикфордова шнура, каждый из которых горит ровно минуту, если его поджечь с одного конца (но сгорать может неравномерно). Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м. Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC. На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK. Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q. Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие. Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся ребра равны c . Найдите радиус описанной сферы. Рассматриваются всевозможные квадратные трёхчлены вида x² + px + q, где p, q – целые, 1 ≤ p ≤ 1997, 1 ≤ q ≤ 1997. В выпуклом шестиугольнике ABCDEF отрезки AB и CF, CD и BE, EF и AD попарно параллельны. В треугольнике ABC известно, что BC = 2AC. На стороне BC выбрана точка D, для которой ∠CAD = ∠B. Прямая AD пересекает биссектрису внешнего угла при вершине C в точке E. Докажите, что AE = AB.
Диагонали выпуклого четырёхугольника ABCD пересекаются в
точке E, AB = BC, DB — биссектриса угла D,
На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников. В выпуклом четырёхугольнике ABCD стороны равны соответственно: AB = 10, BC = 14, CD = 11, AD = 5. Найдите угол между его диагоналями. На окружности радиуса 3, описанной около правильного треугольника, взята точка E. Известно, что расстояние от точки E до одной из вершин треугольника равно 5. Найдите разность расстояний от точки E до двух других вершин треугольника. |
Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 1282]
n бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр.
В треугольнике PQR точка T лежит на стороне PR, ∠QTR = ∠PQR, PT = 8, TR = 1.
В треугольнике KLM проведена медиана LN. Известно, что ∠KLM = ∠LNM, KM = 10.
На окружности радиуса 5, описанной около правильного треугольника, взята точка D. Известно, что расстояние от точки D до одной из вершин треугольника равно 9. Найдите сумму расстояний от точки D до двух других вершин треугольника.
На окружности радиуса 3, описанной около правильного треугольника, взята точка E. Известно, что расстояние от точки E до одной из вершин треугольника равно 5. Найдите разность расстояний от точки E до двух других вершин треугольника.
Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке