ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC известно, что AB = BC, AC = 4$ \sqrt{3}$, радиус вписанной окружности равен 3. Прямая AE пересекает высоту BD в точке E, а вписанную окружность — в точках M и N (M лежит между A и E), ED = 2. Найдите EN.

   Решение

Задачи

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 769]      



Задача 55504

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Радиус окружности, описанной около прямоугольного треугольника, относится к радиусу вписанной в него окружности как 5:2. Найдите площадь треугольника, если один из его катетов равен a.

Прислать комментарий     Решение


Задача 66778

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Тригуб А.

В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.
Прислать комментарий     Решение


Задача 102448

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = BC, AC = 4$ \sqrt{3}$, радиус вписанной окружности равен 3. Прямая AE пересекает высоту BD в точке E, а вписанную окружность — в точках M и N (M лежит между A и E), ED = 2. Найдите EN.

Прислать комментарий     Решение


Задача 102449

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

Прислать комментарий     Решение


Задача 102471

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3+
Классы: 8,9

Окружности радиусов 2 и 3 внешним образом касаются друг друга в точке A. Их общая касательная, проходящая через точку A, пересекает две другие их общие касательные в точках B и C. Найдите BC.

Прислать комментарий     Решение


Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .