ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Ребро правильного тетраэдра ABCD равно a . На ребре BD расположена точка M так, что 3DM=a . Прямой круговой конус расположен так, что его вершина находится на середине ребра AC , а окружность основания проходит через точку M и пересекает рёбра AB и BC . Найдите радиус основания этого конуса. Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке. Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2
Внутри правильного тетраэдра ABCD расположены два шара радиусов 2R и 3R , касающиеся друг друга внешним образом, причём один шар вписан в трёхгранный угол тетраэдра с вершиной в точке A , а другой – в трёхгранный угол с вершиной в точке B . Найдите длину ребра этого тетраэдра. Внутри правильного тетраэдра с ребром a лежат четыре равных шара так, что каждый шар касается трёх других шаров и трёх граней тетраэдра. Найдите радиусы этих шаров.
Последовательность a1,a2,.. такова, что a1
В правильном тетраэдре ABCD плоскость P пересекает рёбра AB ,
BC , CD , AD в точках K , L , M , N соответственно. Площади
треугольников AKN , KBL , NDM составляют соответственно Ребро правильного тетраэдра ABCD равно a . На ребре AB как на диаметре построена сфера. Найдите радиус шара, вписанного в трёхгранный угол тетраэдра с вершиной в точке A и касающегося построенной сферы. В остроугольном треугольнике ABC проведены высоты AE и CD. Различные точки F и G на стороне AC таковы, что DF || BC и EG || AB. Докажите, что точки D, E, F и G лежат на одной окружности. Через каждую грань куба провели плоскость. На сколько частей разделят пространство данные плоскости? В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.
В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)
Сфера вписана в четырёхугольную пирамиду SKLMN , основанием которой
является трапеция KLMN , а также вписана в правильный тетраэдр, одна
из граней которого совпадает с боковой гранью пирамиды SKLMN .
Найдите радиус сферы, если площадь трапеции KLMN равен 3 Чтобы открыть сейф, нужно ввести код – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 106]
Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.
Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?
Чтобы открыть сейф, нужно ввести код – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф.
Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.
Делится ли на 9 число 1234...500? (В записи этого числа подряд выписаны числа от 1 до 500.)
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 106]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке