Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Найдите наименьшее значение функции y = 9 cos x+14x+7 на отрезке [0;] .

Вниз   Решение


Найдите наименьшее значение функции y = 5 cos x+6x+6 на отрезке [0;] .

ВверхВниз   Решение


Найдите наименьшее значение функции y = 8 cos x+10x+8 на отрезке [0;] .

ВверхВниз   Решение


Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.

ВверхВниз   Решение


Найдите наименьшее значение функции y = 2 cos x+13x+5 на отрезке [0;] .

ВверхВниз   Решение


Найдите площадь сечения правильной треугольной призмы ABCA1B1C1 плоскостью, проходящей через вершину C и середину стороны B1C1 основания A1B1C1 и параллельной диагонали AC1 боковой грани AA1C1C , если расстояние между прямой AC1 и секущей плоскостью равно 1, а сторона основания призмы равна .

ВверхВниз   Решение


У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HEG .

ВверхВниз   Решение


Найдите наименьшее значение функции y = 5 cos x+6x+7 на отрезке [0;] .

ВверхВниз   Решение


Основанием прямой призмы ABCA1B1C1 является прямоугольный треугольник ABC ( B = 90o , AB=BC=10 ); AA1=BB1=CC1=12 . Точка M – середина бокового ребра AA1 . Через точки M и B1 проведена плоскость, составляющая с плоскостью основания угол 45o и пересекающая ребро CC1 в точке E . Найдите CE .

ВверхВниз   Решение


Дана бесконечная последовательность чисел  a1, a2, a3, ...  Известно, что для любого номера k можно указать такое натуральное число t, что
ak = ak+t = ak+2t = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное T, что  ak = ak+T  при любом натуральном k?

ВверхВниз   Решение


Через середину высоты правильной четырёхугольной пирамиды проведено сечение, перпендикулярное боковому ребру. Найдите площадь этого сечения, если боковое ребро равно 4, а угол между боковыми рёбрами, лежащими в одной грани, равен .

ВверхВниз   Решение


Существует ли такая бесконечная периодическая последовательность, состоящая из букв a и b, что при одновременной замене всех букв a на aba и букв b на bba она переходит в себя (возможно, со сдвигом)?

ВверхВниз   Решение


Рассматривается произвольный многоугольник (не обязательно выпуклый).
  а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?
  б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем ⅓ площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)

ВверхВниз   Решение


Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

ВверхВниз   Решение


Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.

ВверхВниз   Решение


Точка M принадлежит ребру AA1 параллелепипеда ABCDA1B1C1D1 , причём AM:MA1 = 1:2 . Постройте сечение параллелепипеда плоскостью, проходящей через точку M и середину K ребра BC параллельно прямой B1D1 . В каком отношении эта плоскость делит диагональ BD1 параллелепипеда?

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка P на ребре AB , точка Q на ребре BC и точка R на ребре CD взяты так, что AP= , BQ= и CR= . Плоскость PQR пересекает прямую AD в точке S . Найдите угол между прямыми SQ и RQ .

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HFG .

ВверхВниз   Решение


Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.

ВверхВниз   Решение


Закрасьте в квадрате 9×9 несколько клеток так, чтобы из центра квадрата не были видны его стороны (то есть любой луч, выходящий из центра, задевал какую-нибудь закрашенную клетку хотя бы по углу). Нельзя закрашивать клетки, соседние по стороне или углу, а также центральную клетку. \epsfbox{pmath.1}

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 140]      



Задача 66204

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теорема Пифагора (прямая и обратная) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 7,8,9

Нарисуйте на клетчатой бумаге четырёхугольник с вершинами в узлах, длины сторон которого – различные простые числа.

Прислать комментарий     Решение

Задача 66996

Темы:   [ Геометрия на клетчатой бумаге ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

На клетчатой плоскости отметили 40 клеток. Всегда ли найдётся клетчатый прямоугольник, содержащий ровно 20 отмеченных клеток?

Прислать комментарий     Решение

Задача 78153

Темы:   [ Геометрия на клетчатой бумаге ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Сторона клетки клетчатой бумаги равна 1. По линиям сетки построен прямоугольник со сторонами m и n. Можно ли в прямоугольнике провести по линиям сетки замкнутую ломаную, которая ровно один раз проходила бы через каждый узел сетки, расположенный внутри или на границе прямоугольника? Если можно, то какова её длина?

Прислать комментарий     Решение

Задача 104111

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 3+
Классы: 6,7,8

Закрасьте в квадрате 9×9 несколько клеток так, чтобы из центра квадрата не были видны его стороны (то есть любой луч, выходящий из центра, задевал какую-нибудь закрашенную клетку хотя бы по углу). Нельзя закрашивать клетки, соседние по стороне или углу, а также центральную клетку. \epsfbox{pmath.1}
Прислать комментарий     Решение


Задача 109655

Темы:   [ Геометрия на клетчатой бумаге ]
[ Боковая поверхность параллелепипеда ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Симметрия и инволютивные преобразования ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .