Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Найдите все пары простых чисел, разность квадратов которых является простым числом.

Вниз   Решение


Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)

ВверхВниз   Решение


Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.

ВверхВниз   Решение


Автор: Мусин О.

Докажите, что если числа a1, a2, ..., am  отличны от нуля и для любого целого  k = 0, 1, ..., n  (n < m – 1)  выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0,  то в последовательности a1, a2, ..., am  есть по крайней мере  n + 1  пара соседних чисел, имеющих разные знаки.

ВверхВниз   Решение


Функция f (0) для целых неотрицательных n определена так: f (0) = 0, f (1) = 1, f (2n) = f (n), f (2n + 1) = f (n) + f (n + 1). Для данного N найти и напечатать f (N). Обязательное условие: N столь велико, что недопустимо заводить массив из N чисел ( равно как и массив, длина которого растет с ростом числа N ).

ВверхВниз   Решение


Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

ВверхВниз   Решение


Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

ВверхВниз   Решение


Докажите, что геометрическое место точек, равноудаленных от двух заданных точек пространства, есть плоскость, перпендикулярная отрезку с концами в этих точках и проходящая через середину этого отрезка.

ВверхВниз   Решение


Из точек A и B , лежащих на разных сторонах угла, восставлены перпендикуляры к сторонам, пересекающие биссектрису угла в точках C и D . Докажите, что середина отрезка CD равноудалена от точек A и B .

ВверхВниз   Решение


Основание наклонной призмы – равносторонний треугольник со стороной a . Одно из боковых рёбер равно b и образует с прилежащими сторонами основания углы 45o . Найдите боковую поверхность призмы.

ВверхВниз   Решение


Сторона основания правильной треугольной призмы ABCA1B1C1 равна 4, а боковое ребро равно 3. На ребре BB1 взята точка F , а на ребре CC1 – точка G так, что B1F=1 , CG= . Точки E и D – середины рёбер AC и B1C1 соответственно. Найдите наименьшее возможное значение суммы EP+PQ , где точка P принадлежит отрезку A1D , а точка Q – отрезку FG .

ВверхВниз   Решение


Купец продаёт двух коней с сёдлами, причём цена одного седла 120 рублей, а другого – 25 рублей. Первый конь с хорошим седлом втрое дороже другого с дешёвым, а другой конь с хорошим седлом вдвое дешевле первого коня с дешёвым. Какова цена каждого коня?

ВверхВниз   Решение


Когда Буратино отправился на занятия ВМШ, папа Карло пообещал ему заплатить за первую правильно решенную задачу одну копейку, за вторую - две копейки, за третью - четыре, и т.д. За месяц Буратино получил 655 руб 35 коп. Сколько задач он решил?

ВверхВниз   Решение


Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 415]      



Задача 61001

 [Формулы сокращенного умножения]
Тема:   [ Разложение на множители ]
Сложность: 2
Классы: 7,8,9

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Прислать комментарий     Решение

Задача 61078

 [Тождество Диофанта]
Темы:   [ Тождественные преобразования ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 2
Классы: 7,8,9,10,11

Докажите равенство   (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.

Прислать комментарий     Решение

Задача 105072

Тема:   [ Тождественные преобразования ]
Сложность: 2
Классы: 7,8,9

Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

Прислать комментарий     Решение

Задача 115962

Тема:   [ Формулы сокращенного умножения ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.
Прислать комментарий     Решение


Задача 116144

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 7,8,9

Найдите все пары простых чисел, разность квадратов которых является простым числом.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 415]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .