ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0 где A1, A2 – вещественные числа. Решение |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 98]
Дана функция , где трёхчлены x² + ax + b и x² + cx + d не имеют общих корней. Докажите, что следующие два утверждения равносильны:
Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.
Число рёбер многогранника равно 100.
Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0 где A1, A2 – вещественные числа.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 98] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|