ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что корни уравнения  x² + px + q = 0  – целые числа, а p и q – простые числа. Найдите p и q.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 965]      



Задача 107740

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9

Известно, что корни уравнения  x² + px + q = 0  – целые числа, а p и q – простые числа. Найдите p и q.

Прислать комментарий     Решение

Задача 109457

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10,11

На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов  ax² + bx + c,  bx² + cx + a  и  cx² + ax + b?

Прислать комментарий     Решение

Задача 109495

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 111250

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли числа такие p и q, что уравнения  x² + (p – 1)x + q = 0  и  x² + (p + 1)x + q = 0  имеют по два различных корня, а уравнение
x² + px + q = 0  не имеет корней?

Прислать комментарий     Решение

Задача 111261

Темы:   [ Разложение на множители ]
[ Показательные уравнения ]
Сложность: 3
Классы: 9,10,11

Найдите все положительные корни уравнения  xx + x1–x = x + 1.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .