ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC. |
Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 460]
Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
Точка M расположена на стороне BC параллелограмма ABCD, причём BM : MC = 3 : 2. Отрезки AM и BD пересекаются в точке K. Известно, что площадь параллелограмма равна 1. Найдите площадь четырёхугольника CMKD.
Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.
Площадь трапеции ABCD равна 6. Пусть E – точка пересечения продолжений боковых сторон этой трапеции. Через точку E и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание BC в точке P, а большее основание AD – в точке Q. Точка F лежит на отрезке EC, причём EF : FC = EP : EQ = 1 : 3. Найдите площадь треугольника EPF.
Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|