ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри квадрата ABCD выбрана такая точка M, что  ∠MAC = ∠MCD = α.  Найдите величину угла ABM.

   Решение

Задачи

Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1275]      



Задача 102396

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике KLM  KM = k,  ML = m,  точка O – центр описанной окружности. Прямая KN, перпендикулярная прямой MO, пересекает продолжение стороны LM в точке N. Найдите LN.

Прислать комментарий     Решение

Задача 102481

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

Четырёхугольник PQRS вписан в окружность. Диагонали PR и QS перпендикулярны и пересекаются в точке M. Известно, что  PS = 13,  QM = 10,  QR = 26.  Найдите площадь четырёхугольника PQRS.

Прислать комментарий     Решение

Задача 102482

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Диагонали AC и BD перпендикулярны и пересекаются в точке K. Известно, что  AD = 5,  BC = 10,  BK = 6.
Найдите площадь четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 107779

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательные равные треугольники ]
[ ГМТ и вписанный угол ]
Сложность: 3+
Классы: 7,8,9

Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Прислать комментарий     Решение

Задача 108031

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Внутри квадрата ABCD выбрана такая точка M, что  ∠MAC = ∠MCD = α.  Найдите величину угла ABM.

Прислать комментарий     Решение

Страница: << 160 161 162 163 164 165 166 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .