ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx. ![]() ![]() Внутри треугольника ABC взята такая точка M, что ∠BMC = 90° + ½ ∠BAC и прямая AM содержит центр O описанной окружности треугольника BMC. Докажите, что точка M – центр вписанной окружности треугольника ABC. ![]() ![]() |
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]
Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.
Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.
Пусть L – точка пересечения симедиан остроугольного треугольника ABC, а BH – его высота. Известно, что ∠ALH = 180° – 2∠A.
Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |