Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

В этой задаче вы должны построить предложение русского языка, которое говорит о себе правду, только правду, и ничего кроме правды. Это предложение должно содержать в себе информацию о количестве букв, слов, пробелов, запятых, точек, кавычек в предложении и о количестве вхождений в предложение всех его слов. Оно должно быть орфографически и пунктуационно правильным, а также корректным с точки зрения русского языка. Все числительные должны быть записаны словами.

Моделью такого предложения (не удовлетворяющей лишь свойству правдивости) может служить такой текст:
В этом предложении сто букв, двадцать слов, десять запятых,
двадцать пробелов, десять кавычек, одна точка, два слова "В",
два слова "этом", два слова "предложении", два слова "сто", два
слова "букв", два слова "двадцать", десять слова "десять",
десять слов "слова", два слова "слов", два слова "запятых", два
слова "пробелов", два слова "кавычек", два слова "одна", два
слова "точка", десять слов "два".


Выходные данные

В выходной файл нужно выдать правдивое предложение. Предложение должно быть не длиннее 10 килобайт. Оно может содержать также иную (правдивую) информацию. Предложение должно быть как можно короче.

Вниз   Решение


Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части?


ВверхВниз   Решение


Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH.

ВверхВниз   Решение


Автор: Фольклор

На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3?

ВверхВниз   Решение


Из двух квадратов один. Имеются два квадрата 3×3 и 1×1. Разрезать эти квадраты прямыми на части (не более трех), из которых можно было бы сложить один квадрат.

ВверхВниз   Решение


Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.

ВверхВниз   Решение


Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам.

ВверхВниз   Решение


На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги. Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.

ВверхВниз   Решение


Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры.

ВверхВниз   Решение


Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

ВверхВниз   Решение


Доказать, что если несократимая рациональная дробь  p/q  является корнем многочлена P(x) с целыми коэффициентами, то  P(x) = (qx – p)Q(x),  где многочлен Q(x) также имеет целые коэффициенты.

ВверхВниз   Решение


По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.

ВверхВниз   Решение


Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами.

ВверхВниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB второй раз пересекает вторую окружность в точке E. Докажите, что AD – биссектриса угла CAE.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 149]      



Задача 66264

Темы:   [ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса делит дугу пополам ]
[ Прямая Симсона ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

Прислать комментарий     Решение

Задача 66268

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10

Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой.

Прислать комментарий     Решение

Задача 66314

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Три прямые, пересекающиеся в одной точке ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 3+
Классы: 9,10

Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

Прислать комментарий     Решение

Задача 102447

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C – другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает сторону AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  AE : EC,  если  AB = 5  и  BC = 9.
  б) Сравните площади треугольников ABC и ABF.

Прислать комментарий     Решение

Задача 108080

Темы:   [ Пересекающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB второй раз пересекает вторую окружность в точке E. Докажите, что AD – биссектриса угла CAE.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .