Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8  — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = · 109 м2 , а излучаемая ею мощность P не менее 9,12· 1010 , определите наименьшую возможную температуру этой звезды.

Вниз   Решение


Сравните числа  

ВверхВниз   Решение


У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются товарищами, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

ВверхВниз   Решение


Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

ВверхВниз   Решение


ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .

ВверхВниз   Решение


Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?

ВверхВниз   Решение


В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

ВверхВниз   Решение


В треугольнике ABC взяты точка N на стороне AB, а точка M – на стороне AC. Отрезки CN и BM пересекаются в точке O,  AN : NB = 2 : 3,  BO : OM = 5 : 2.
Найдите  CO : ON.

ВверхВниз   Решение


В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что  AB = A1B1CD = C1D1  и  ∠ADC = ∠A1D1C1.
Докажите, что треугольники ABC и A1B1C1 равны.

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 352]      



Задача 53696

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольные треугольники ]
Сложность: 4
Классы: 8,9

Найдите углы треугольника, если известно, что медиана и высота, выходящие из вершины одного из его углов, делит этот угол на три равные части.

Прислать комментарий     Решение

Задача 56885

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4
Классы: 8,9

а) В треугольниках ABC и A'B'C' равны стороны AC и A'C', углы при вершинах B и B' и биссектрисы углов B и B'.
Докажите, что эти треугольники равны (точнее говоря, треугольник ABC равен треугольнику A'B'C' или треугольнику C'B'A').
б) Через точку D биссектрисы BB1 угла ABC проведены прямые AA1 и CC1 (точки A1 и C1 лежат на сторонах треугольника).
Докажите, что если  AA1 = CC1,  то  AB = BC.

Прислать комментарий     Решение

Задача 67303

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На боковых сторонах AB и BC равнобедренного остроугольного треугольника ABC выбраны точки M и K. Отрезки CM и AK пересекаются в точке E. Оказалось, что MEA=ABC. Докажите, что середины всевозможных отрезков MK лежат на одной прямой.
Прислать комментарий     Решение


Задача 108098

Темы:   [ Равные треугольники. Признаки равенства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 8,9

В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что  AB = A1B1CD = C1D1  и  ∠ADC = ∠A1D1C1.
Докажите, что треугольники ABC и A1B1C1 равны.

Прислать комментарий     Решение

Задача 108174

Темы:   [ Вспомогательные равные треугольники ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O, вписанная в треугольник ABC, касается сторон AC, AB и BC в точках K, M и N соответственно. Медиана BB1 треугольника пересекает MN в точке D. Докажите, что точка O лежит на прямой DK.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .