Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Вниз   Решение


В треугольнике ABC, таком, что  AB = BC = 4  и   AC = 2,  проведены биссектриса AA1, медиана BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AC, AA1 и CC1;   б) AA1, BB1 и CC1.

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.

ВверхВниз   Решение


В трапеции CDEF ( DE$ \Vert$CF) известно, что CF = 2 . DE. На сторонах CD и EF взяты соответственно точки K и L, CK : KD = 3 : 2, EL : LF = 5 : 3. В каком отношении прямая KL делит площадь трапеции?.

ВверхВниз   Решение


Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

ВверхВниз   Решение


Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются в точке X. Докажите, что CX – биссектриса угла ACN.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите:
  1) угол между прямыми AB и B1C1;
  2) площадь треугольника A1B1C1;
  3) расстояние от точки B до плоскости A1B1C1;
  4) радиус вписанного в пирамиду A1B1C1D шара.

ВверхВниз   Решение


На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.

ВверхВниз   Решение


В правильной четырёхугольной пирамиде SABCD высота равна диагонали основания ABCD . Через вершину A параллельно прямой BD проведена плоскость, касающаяся вписанного в пирамиду шара. Найдите отношение площади сечения к площади основания пирамиды.

ВверхВниз   Решение


Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8  — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = · 1015 м2 , а излучаемая ею мощность P не менее 46,17· 1024 , определите наименьшую возможную температуру этой звезды.

ВверхВниз   Решение


Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

ВверхВниз   Решение


В треугольнике ABC отрезок AD – биссектриса,  AD = l,  AB = c,  AC = b.  Найдите угол A.

ВверхВниз   Решение


Известно, что точка, симметричная центру вписанной окружности треугольника ABC относительно стороны BC , лежит на описанной окружности этого треугольника. Найдите угол A .

Вверх   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 5298]      



Задача 108250

Темы:   [ Углы между биссектрисами ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Известно, что точка, симметричная центру вписанной окружности треугольника ABC относительно стороны BC , лежит на описанной окружности этого треугольника. Найдите угол A .
Прислать комментарий     Решение


Задача 108586

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Проекция на прямую (прочее) ]
Сложность: 3
Классы: 8,9

Через точку пересечения медиан треугольника ABC проходит прямая, пересекающая стороны AB и AC. Расстояния от вершин B и C до этой прямой равны b и c соответственно. Найдите расстояние от вершины A до этой прямой.

Прислать комментарий     Решение

Задача 108587

Темы:   [ Теорема косинусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o . Найдите периметр трапеции.
Прислать комментарий     Решение


Задача 108617

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точки P , Q , R и S – середины сторон соответственно AB , BC , CD и DA выпуклого четырёхугольника ABCD , M – точка внутри этого четырёхугольника, причём APMS – параллелограмм. Докажите, что CRMQ – тоже параллелограмм.
Прислать комментарий     Решение


Задача 108619

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точка D взята на медиане BM треугольника ABC. Через точку D проведена прямая, параллельная стороне AB, а через точку C – прямая, параллельная медиане BM. Две проведённые прямые пересекаются в точке E. Докажите, что  BE = AD.

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 5298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .