Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 207]
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC проведена биссектриса BL. На отрезке CL выбрана точка M. Касательная в точке B к описанной окружности Ω треугольника ABC пересекает луч CA в точке P. Касательные в точках B и M к описанной окружности Γ треугольника BLM, пересекаются в точке Q. Докажите, что прямые PQ и BL параллельны.
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.
|
|
Сложность: 4- Классы: 9,10
|
В остроугольном треугольнике ABC AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Две окружности пересекаются в точках $P$ и $R$. Через точку $P$ проведены прямые $l_1$, $l_2$. Прямая $l_1$ вторично пересекает окружности в точках $A_1$ и $B_1$. Касательные в этих точках к описанной окружности треугольника $A_1RB_1$ пересекаются в точке $C_1$. Прямая $C_1R$ пересекает $A_1B_1$ в точке $D_1$. Аналогично определены точки $A_2$, $B_2$, $C_2$, $D_2$. Докажите, что окружности $D_1D_2P$ и $C_1C_2R$ касаются.
В четырёхугольнике ABCD на сторонах BC и AD взяты точки R и T соответственно. Отрезки BT и AR пересекаются в точке P, отрезки CT и DR – в точке S. Оказалось, что PRST – параллелограмм. Докажите, что AB || CD.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 207]