ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

H – ортоцентр остроугольного треугольника ABC, D – середина стороны AC. Прямая, проходящая через точку H перпендикулярно отрезку DH, пересекает стороны AB и BC в точках E и F. Докажите, что  HE = HF.

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 [Всего задач: 303]      



Задача 108641

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная окружность ]
[ Вспомогательные подобные треугольники ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

H – ортоцентр остроугольного треугольника ABC, D – середина стороны AC. Прямая, проходящая через точку H перпендикулярно отрезку DH, пересекает стороны AB и BC в точках E и F. Докажите, что  HE = HF.

Прислать комментарий     Решение

Задача 116675

Темы:   [ Параллелограммы (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 7,8,9

В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

Прислать комментарий     Решение

Задача 109505

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Общие четырехугольники ]
[ Углы между биссектрисами ]
[ Векторы помогают решить задачу ]
[ Вспомогательная окружность ]
[ Средняя линия треугольника ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5-
Классы: 8,9,10

В четырёхугольнике ABCD стороны AB, BC и CD равны, M – середина стороны AD. Известно, что  ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .