ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть H — ортоцентр треугольника ABC , а K — проекция точки H на медиану BM этого треугольника. Докажите, что точки A , K , H и C лежат на одной окружности. |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 500]
В остроугольном неравнобедренном треугольнике ABC проведена высота AH. На сторонах AC и AB отмечены точки B1 и C1 соответственно, так, что HA – биссектриса угла B1HC1 и четырёхугольник BC1B1C – вписанный. Докажите, что B1 и C1 – основания высот треугольника ABC.
На стороне AB четырёхугольника ABCD нашлась такая точка M, что четырёхугольники AMCD и BMDC описаны около окружностей с центрами O1 и O2 соответственно. Прямая O1O2 отсекает от угла CMD равнобедренный треугольник с вершиной M. Докажите, что четырёхугольник ABCD вписанный.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.
Точки K , L , M и N – середины сторон соответственно AB , BC , CD и DA вписанного четырёхугольника ABCD . Докажите, что ортоцентры треугольников AKN , BKL , CLM и DMN являются вершинами параллелограмма.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 500]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке