Версия для печати
Убрать все задачи
Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на a метров у себя и на b метров у соперника",
где a, b – действительные числа, 0 < a < b. Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе
а) конечно; б) бесконечно?

Решение
Из картона вырезали два многоугольника. Может ли быть, что при любом их расположении на плоскости они либо имеют общие внутренние точки, либо пересекаются по конечному множеству точек?


Решение
Докажите, что если все грани тетраэдра равны между собой,
то противоположные рёбра тетраэдра попарно равны.

Решение