ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть
В правильной треугольной пирамиде SABC ( S – вершина)
сторона основания равна 6, высота пирамиды SH равна На столе лежат несколько тонких спичек одинаковой длины. Всегда ли можно раскрасить их концы а) в 2, б) в 3 цвета так, чтобы два конца каждой спички были разных цветов, а каждые два касающихся конца (разных спичек) – одного и того же цвета? Основанием пирамиды служит треугольник со сторонами 9, 12 и 15, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 60o . Какой наибольший объём может иметь такая пирамида? Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD. Отрезок AE является медианой равнобедренного треугольника ABC ( AB= AC) . Окружность проходит через точки A , C , E и пересекает сторону AB в точке D так, что AD:AB=7:9 . Найдите отношение длины окружности к периметру треугольника ABC . В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.
В правильной четырёхугольной пирамиде SABCD ( S – вершина)
сторона основания равна 8
Окружность с центром на диагонали AC трапеции
ABCD ( BC || AD ) проходит через вершины A
и B , касается стороны CD в точке C и пересекает
основание AD в точке E . Найдите площадь трапеции
ABCD , если BC=2 , CD=10 В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB = AA1 = 12 и AD = 30 . Точка M расположена в грани ABB1A1 на расстоянии 1 от середины AB и на равных расстояниях от вершин A и B . Точка N лежит в грани DCC1D1 и расположена симметрично точке M относительно центра параллелепипеда. Найдите длину кратчайшего пути по поверхности параллелепипеда между точками M и N . Высота правильной треугольной пирамиды равна высоте её основания, объём пирамиды равен V . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что боковое ребро лежит на высоте основания пирамиды, противоположная этому ребру боковая грань параллельна основанию пирамиды, и вершины этой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 3:1, считая от вершины пирамиды; б) наибольшее значение объёма рассматриваемых призм. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 127]
В правильной пирамиде SMNPQ ( S – вершина) точки K и F –
середины рёбер PQ и QM соответственно, точка E лежит на отрезке SK ,
причём SK = 4 , SE =
В основании четырёхугольной пирамиды лежит ромб ABCD , в
котором
Найдите наибольшее значение объёма пирамиды SABC при следующих
ограничениях
Объём правильной четырёхугольной пирамиды равен V , угол между боковым ребром и плоскостью основания равен 30o . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что одно из боковых рёбер лежит на диагонали основания пирамиды, одна из боковых граней параллельна основанию пирамиды, и вершины этой грани лежат на боковых гранях пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 2:3, считая от вершины; б) наибольшее значение объёма рассматриваемых призм.
Высота правильной треугольной пирамиды равна высоте её основания, объём пирамиды равен V . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что боковое ребро лежит на высоте основания пирамиды, противоположная этому ребру боковая грань параллельна основанию пирамиды, и вершины этой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 3:1, считая от вершины пирамиды; б) наибольшее значение объёма рассматриваемых призм.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 127]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке