ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Построить прямоугольный треугольник по радиусам вписанной и вневписанной (в прямой угол) окружностей.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 484]      



Задача 78179

Темы:   [ Окружности (построения) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4+
Классы: 10,11

Построить окружность, проходящую через две данные точки и отсекающую от данной окружности хорду данной длины.
Прислать комментарий     Решение


Задача 109001

Темы:   [ Построения с помощью вычислений ]
[ Построение треугольников по различным элементам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4+
Классы: 8,9

Построить треугольник по двум сторонам так, чтобы медианы этих сторон были взаимно перпендикулярны.
Прислать комментарий     Решение


Задача 109026

Темы:   [ Построение треугольников по различным элементам ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4+
Классы: 8,9

Построить прямоугольный треугольник по радиусам вписанной и вневписанной (в прямой угол) окружностей.
Прислать комментарий     Решение


Задача 55603

Темы:   [ Необычные построения (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4+
Классы: 8,9

Дан треугольник ABC, который можно накрыть одним пятаком. Постройте с помощью пятака четвёртую вершину параллелограмма ABCD (пятак разрешается прикладывать к любым двум точкам и обводить карандашом).

Прислать комментарий     Решение


Задача 55600

Темы:   [ Четырехугольники (построения) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5-
Классы: 8,9

С помощью циркуля и линейки постройте квадрат по четырём точкам, лежащим на четырёх его сторонах.

Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .