|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Число Докажите, что у любого выпуклого многогранника найдутся три ребра, из которых можно составить треугольник. Докажите, что если углы выпуклого пятиугольника образуют арифметическую прогрессию, то каждый из них больше 36o. На клетчатой доске размером 4×4 Петя закрашивает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки не пересекающимися и не вылезающими за границу квадрата уголками из трёх клеток. Какое наименьшее количество клеток должен закрасить Петя, чтобы Вася не выиграл? Докажите, что геометрическое место точек, равноудаленных от двух заданных точек пространства, есть плоскость, перпендикулярная отрезку с концами в этих точках и проходящая через середину этого отрезка. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|