Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

Вниз   Решение


На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции

y= sin x, x(0).

Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α() ; б) α(0;) ?

ВверхВниз   Решение


Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что  ∠ILA = ∠IMB,  ∠IKC = ∠INB.  Докажите, что
AM + KL + CN = AC.

ВверхВниз   Решение


Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём  2∠MON = ∠AOC.  Докажите, что периметр треугольника MBN не меньше стороны AC.

ВверхВниз   Решение


Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.

ВверхВниз   Решение


Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.

ВверхВниз   Решение


В окружности с центром O проведены две параллельные хорды AB и CD. Окружности с диаметрами AB и CD пересекаются в точке P.
Доказать, что середина отрезка OP равноудалена от прямых AB и CD.

ВверхВниз   Решение


Дан параллелограмм ABCD, в котором  AB = a,  AD = b.  Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение  M1N1 : M2N2?

ВверхВниз   Решение


Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство

ВверхВниз   Решение


В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что  CD = CB1.

ВверхВниз   Решение


На основании BC треугольника ABC найти точку M так, чтобы окружности, вписанные в треугольники ABM и AMC взаимно касались.

ВверхВниз   Решение


Медиана DM треугольника DEF равна половине стороны EF. Один из углов, образованных при пересечении стороны EF биссектрисой DL, равен 55°.
Найдите углы треугольника DEF.

ВверхВниз   Решение


Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

ВверхВниз   Решение


В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.

ВверхВниз   Решение


По кругу расставлены цифры 1, 2, 3,..., 9 в произвольном порядке. Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка, в котором записаны цифры?

ВверхВниз   Решение


Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?

ВверхВниз   Решение


В параллелограмме ABCD диагональ АС в два раза больше стороны АВ. На стороне BC выбрана точка K так, что  ∠KDB = ∠BDA.
Найдите отношение  BK : KC.

ВверхВниз   Решение


Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что  MK = KN.

ВверхВниз   Решение


Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

ВверхВниз   Решение


В трапеции KLMN известно, что LM$ \Vert$KN, $ \angle$KLM = $ {\frac{\pi}{2}}$, LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.

ВверхВниз   Решение


Из условия tgϕ=1/ cosα cosβ+ tgα tgβ вывести, что cos 2ϕ 0 .

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 210]      



Задача 109155

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 9,10

Из условия tgϕ=1/ cosα cosβ+ tgα tgβ вывести, что cos 2ϕ 0 .
Прислать комментарий     Решение


Задача 109453

Темы:   [ Тригонометрические неравенства ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 10,11

Пусть α и β – острые углы такие, что sin2α + sin2β < 1 . Докажите, что sin2α + sin2β < sin2(α + β) .
Прислать комментарий     Решение


Задача 109711

Темы:   [ Тригонометрические неравенства ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

Прислать комментарий     Решение

Задача 110210

Темы:   [ Тригонометрические неравенства ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10,11

Докажите, что для каждого x такого, что sin x 0 , найдется такое натуральное n , что | sin nx| .
Прислать комментарий     Решение


Задача 61145

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Алгебраические уравнения в C. Извлечение корня ]
[ Теорема Виета ]
Сложность: 4+
Классы: 10,11

Докажите, что при нечётном  n > 1  справедливо равенство  

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .