ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В правильной четырёхугольной пирамиде SABCD , каждое ребро
которой равно b , построено сечение плоскостью, параллельной диагонали
основания BD и боковому ребру SA и пересекающей ребро AB пирамиды.
Периметр многоугольника, полученного в этом сечении, равен
2(2+
Метод Ньютона (см. задачу
9.77) не всегда позволяет приблизиться
к корню уравнения f (x) = 0. Для многочлена
f (x) = x(x - 1)(x + 1)
найдите начальное условие x0 такое, что
f (x0)
В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана
сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4.
Точка E выбрана на ребре SC , причём SE= Высота SO правильной четырёхугольной пирамиды SABCD образует с боковым ребром угол α , объём этой пирамиды равен V . Вершина второй правильной четырёхугольной пирмиды находится в точке S , центр основания – в точке C , а одна из вершин основания лежит на прямой SO . Найдите объём общей части этих пирамид. Перепишите формулы Муавра (см. задачу 61088), используя вместо тригонометрических функций комплексную экспоненту. Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника. Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525: fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl). а) Докажите равенства: fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x). б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).
В правильной четырёхугольной пирамиде SABCD , каждое ребро
которой равно 2, построено сечение плоскостью, параллельной диагонали
основания AC и боковому ребру SB пирамиды и пересекающей ребро AB .
Найдите периметр многоугольника, полученного в этом сечении, если
нижнее основание сечения равно Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD . На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного). Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством
Укажите точки на поверхности куба, из которых диагональ куба видна под наименьшим углом.
В треугольной пирамиде ABCD известно, что AB |
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]
Найдите наибольший возможный угол между плоскостью боковой грани и не принадлежащим ей боковым ребром правильной четырёхугольной пирамиды.
В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .
В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана
сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4.
Точка E выбрана на ребре SC , причём SE=
В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана
сфера. Сторона основания пирамиды равна 8, а высота пирамиды равна 3.
Точка M – середина ребра SD , а точка K является ортогональной
проекцией точки M на плоскость ABCD . Через точку M проведена
касательная к сфере, пересекающая плоскость ASC в точке N , причём
Все ребра треугольной пирамиды ABCD касаются некоторого шара.
Три отрезка, соединяющие середины скрещивающихся рёбер AB и CD ,
AC и BD , AD и BC , равны между собой,
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке