Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Саша спускался по лестнице из своей квартиры к другу Коле, который живет на первом этаже. Когда он спустился на несколько этажей, оказалось, что он прошёл треть пути. Когда он спустился ещё на один этаж, ему осталось пройти половину пути. На каком этаже живёт Саша?

Вниз   Решение


В треугольнике ABC точка I  — центр вписанной окружности. Точки M и N  — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол  BIM  — также прямой.

ВверхВниз   Решение


BD – биссектриса треугольника ABC. Точка E выбрана так, что  ∠EAB = ∠ACB,  AE = DC,  и при этом отрезок ED пересекается с отрезком AB в точке K. Докажите, что  KE = KD.

ВверхВниз   Решение


M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что  ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.

ВверхВниз   Решение


Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.

ВверхВниз   Решение


Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Найдите среднюю линию трапеции.

ВверхВниз   Решение


Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции.

ВверхВниз   Решение


Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


В треугольнике ABC точка I — центр вписанной окружности. Точки M и N — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол BIM — также прямой.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

ВверхВниз   Решение


Высота равнобедренной трапеции ABCD с основаниями AD и BC равна 4 , диагонали трапеции пересекаются в точке O , AOD = 120o . Найдите среднюю линию трапеции.

ВверхВниз   Решение


На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.

ВверхВниз   Решение


Что больше 2700 или 5300?

ВверхВниз   Решение


Дан правильный треугольник ABC. На продолжении стороны AC за точку C взята точка D, а на продолжении стороны BC за точку C – точка E, причём
BD = DE.  Докажите, что  AD = CE.

ВверхВниз   Решение


Равносторонний треугольник ABC со стороной 3 вписан в окружность. Точка D лежит на окружности, причём хорда AD равна . Найдите хорды BD и CD .

ВверхВниз   Решение


В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

ВверхВниз   Решение


Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 3, 4, 5.

ВверхВниз   Решение


Два равносторонних треугольника с периметрами 12 и 15 расположены так, что их стороны соответственно параллельны (см.рис.1). Найдите периметр образовавшегося шестиугольника.

ВверхВниз   Решение


Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1032]      



Задача 109483

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи с ограничениями ]
Сложность: 3
Классы: 7,8,9,11

Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?

Прислать комментарий     Решение

Задача 34850

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3

Можно ли расставить числа 1, 2, ..., 50 в вершинах и серединах сторон правильного 25-угольника так, чтобы сумма трёх чисел, стоящих в концах и середине каждой стороны, была для всех сторон одинаковой?

Прислать комментарий     Решение

Задача 35126

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее?

Прислать комментарий     Решение

Задача 64572

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
Сложность: 3
Классы: 5,6,7,8

Нарисуйте фигуру, которую можно разрезать на четыре фигурки, изображённые слева, а можно – на пять фигурок, изображенных справа. (Фигурки можно поворачивать.)

Прислать комментарий     Решение

Задача 64647

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 10,11

У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1032]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .