ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что уравнение ax5 + bx4 + c = 0 имеет три различных корня. Докажите, что уравнение cx5 + bx + a = 0 также имеет три различных корня. Решение |
Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1221]
Известно, что уравнение ax5 + bx4 + c = 0 имеет три различных корня. Докажите, что уравнение cx5 + bx + a = 0 также имеет три различных корня.
Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение P(P(x)) = 0 имеет не меньше различных действительных корней, чем уравнение P(x) = 0.
Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?
У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.
Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|