Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Вниз   Решение


В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠B = 90°)  проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что  OB1 = OB2.

ВверхВниз   Решение


Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


ВверхВниз   Решение


В остроугольном треугольнике KLN высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла K пересекает отрезок OH в такой точке M, что OM : MH = 3 : 1. Найдите площадь треугольника KLN, если LN = 4, а разность углов L и N равна 30o.

ВверхВниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

ВверхВниз   Решение


Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

ВверхВниз   Решение


Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

ВверхВниз   Решение


Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?

ВверхВниз   Решение


Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

ВверхВниз   Решение


Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?

ВверхВниз   Решение


Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали?

ВверхВниз   Решение


Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи.
Про многочлены Фибоначчи и Люка смотри статьи в справочнике.

ВверхВниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что

а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке;

б) если $CN$ – высота, то $ST$ проходит через середину $ML$.

ВверхВниз   Решение


Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом T.
Докажите, что исходные дроби имеют периоды не больше T.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]      



Задача 64779

Темы:   [ Периодические и непериодические дроби ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Положительные рациональные числа a и b записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа  a – b  длина минимального периода равна 15. При каком наименьшем натуральном k длина минимального периода десятичной записи числа  a + kb  может также оказаться равной 15?

Прислать комментарий     Решение

Задача 78066

Темы:   [ Десятичные дроби (прочее) ]
[ Приближения чисел ]
Сложность: 4-
Классы: 9,10

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Прислать комментарий     Решение

Задача 109839

Темы:   [ Периодические и непериодические дроби ]
[ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 8,9,10,11

Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом T.
Докажите, что исходные дроби имеют периоды не больше T.

Прислать комментарий     Решение

Задача 60885

Тема:   [ Периодические и непериодические дроби ]
Сложность: 4
Классы: 8,9,10,11

  Число  N = 142857  обладает и рядом других свойств. Например:  2·142857 = 285714,  3·142857 = 428571,  ..., то есть при умножении на 1, 2, 3, ..., 6 цифры циклически переставляются;  14 + 28 + 57 = 99;  N2 = 20408122449,  20408 + 122449 = 142857 = N.
  Аналогичные операции можно проделывать и с другими периодами дробей. Что получается для чисел 1/17, 1/19? Объясните эти факты.

Прислать комментарий     Решение

Задача 109924

Темы:   [ Периодические и непериодические дроби ]
[ Принцип Дирихле (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .