Страница:
<< 152 153 154 155
156 157 158 >> [Всего задач: 1308]
|
|
Сложность: 4 Классы: 7,8,9
|
Среди 2000 внешне неразличимых шариков половина – алюминиевые массой 10 г, а остальные – дюралевые массой 9,9 г. Требуется выделить две кучки шариков так, чтобы массы кучек были различны, а число шариков в них – одинаково. Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?
|
|
Сложность: 4 Классы: 7,8,9
|
Два пирата делят добычу, состоящую из двух мешков монет и алмаза, действуя по
следующим правилам.
Вначале первый пират забирает себе из любого мешка несколько монет и перекладывает из
этого мешка в другой такое же количество монет. Затем также поступает второй пират
(выбирая мешок, из которого он берет монеты, по своему усмотрению) и т.д. до тех пор,
пока можно брать монеты по этим правилам. Пирату, взявшему монеты последним, достается
алмаз. Кому достанется алмаз, если каждый из пиратов старается получить его?
Дайте ответ в зависимости от первоначального количества монет в мешках.
|
|
Сложность: 4 Классы: 7,8,9
|
Даны 8 гирек весом
1
,2
,..,8
граммов, но неизвестно, какая из них сколько весит.
Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в
доказательство своей правоты готов провести одно взвешивание, в результате которого
будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он?
|
|
Сложность: 4 Классы: 7,8,9
|
Набор из 2003 положительных чисел таков, что для любых двух
входящих в него чисел
a и
b (
a>b ) хотя бы одно из чисел
a+b
или
a-b тоже входит в набор.
Докажите, что если данные числа упорядочить по возрастанию, то
разности между соседними числами окажутся одинаковыми.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В языке жителей Банановой Республики количество слов превышает количество букв в
их алфавите. Докажите, что найдется такое натуральное
k , для которого можно выбрать
k различных слов, в записи которых используется ровно
k различных букв.
Страница:
<< 152 153 154 155
156 157 158 >> [Всего задач: 1308]