ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A . Решение |
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 563]
Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно? б) Достаточно ли требовать, чтобы можно было построить всякие 4 из в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда
На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно диагонали.
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|