ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася. После того, как Наташа съела половину персиков из банки, уровень компота понизился на одну треть. Имеется много одинаковых прямоугольных картонок размером a×b см, где a и b – целые числа, причём a < b. Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить a и b?
Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.
В трапеции KLMN известно, что
LM
Две окружности σ1 и σ2 пересекаются в точках A и B . Пусть PQ и RS – отрезки общих внешних касательных к этим окружностям (точки P и R лежат на σ1 , точки Q и S – на σ2 ). Оказалось, что RB|| PQ . Луч RB вторично пересекает σ2 в точке W . Найдите отношение RB/BW .
Углы треугольника ABC удовлетворяют равенству
cos2A + cos2B + cos2C = 1.
Найдите площадь этого треугольника, если радиусы вписанной и
описанной окружностей равны
Пусть r — радиус вписанной окружности, а ra , rb и rc —
радиусы вневписанных окружностей треугольника ABC , касающихся
сторон BC=a , AC=b , AB=c соответственно; p — полупериметр
треугольника ABC , S — его площадь. Докажите, что
В прямоугольном треугольнике АВС угол А равен 60°,
М – середина гипотенузы АВ. На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону. M – произвольная точка на стороне AC треугольника ABC . Доказать, что отношение радиусов окружностей, описанных около треугольников ABM и BCM , не зависит от выбора точки M на стороне AC . В равнобедренном треугольнике ABC высота BD , опущенная на основание равна h , радиус вписанной окружности равен r . Найдите радиус окружности, описанной около этого треугольника. Один сапфир и два топаза
Окружность касается стороны AD четырёхугольника ABCD в
точке D , а стороны BC – в её середине M . Диагональ
AC пересекает окружность в точках K и L , ( AK<AL ).
Известно, что AK=5 , KL=4 , LC=1 . Лучи AD и BC
пересекаются в точке S , причём |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]
Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .
Окружность, вписанная в треугольник ABC , делит медиану BM на три равные части. Найдите отношение BC:CA:AB .
Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.
В равнобедренную трапецию ABCD ( AB=CD ) вписана
окружность. Пусть M – точка касания окружности
со стороной CD , K – точка пересечения окружности
с отрезком AM , L – точка пересечения окружности с
отрезком BM . Вычислите величину
Окружность касается стороны AD четырёхугольника ABCD в
точке D , а стороны BC – в её середине M . Диагональ
AC пересекает окружность в точках K и L , ( AK<AL ).
Известно, что AK=5 , KL=4 , LC=1 . Лучи AD и BC
пересекаются в точке S , причём
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке