ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что z + z–1 = 2 cos α. Известно, что p > 3 и p – простое число. Найдите радиус окружности, внутри которой расположены две окружности радиуса r и одна окружность радиуса R так, что каждая окружность касается двух других. Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых. Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой. На стороне KN параллелограмма KLMN с тупым углом при вершине M построен равносторонний треугольник KTN так, что точки T и M лежат по разные стороны прямой KN . Известно, что расстояния от точек T и K до прямой MN равны соответственно 8 и 5, а расстояние от точки T до прямой LM равно 10. Найдите площадь параллелограмма KLMN . Докажите, что n5 + 4n делится на 5 при любом натуральном n.
В основании пирамиды SABC лежит треугольник ABC , у которого
AB=15 |
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 379]
В основании пирамиды SABCD лежит ромб ABCD , ребро SD перпендикулярно плоскости основания, SD=6 , BD=3 , AC=2 . Сечения пирамиды двумя параллельными плоскостями, одна из которых проходит через точку B , а другая – через точки A и C , имеют равные площади. В каком отношении делят ребро SD плоскости сечений? Найдите расстояние между плоскостями сечений и объёмы многогранников, на которые пирамида разбивается этими плоскостями.
Ребро SB пирамиды SABC перпендикулярно плоскости ABC , AB=4 ,
BC=2 ,
Основание пирамиды SABCD – параллелограмм ABCD , точки M и N – середины рёбер SC и SD соответственно. Прямые SA , BM и CN попарно перпендикулярны. Найдите объём пирамиды, если SA=a , BM=b , CN=c .
Точка M – середина бокового ребра AA1 параллелепипеда
ABCDA1B1C1D1 . Прямые BD , MD1 и A1C попарно
перпендикулярны. Найдите высоту параллелепипеда, если BD=2a ,
BC=
Точка D – середина бокового ребра CC1 треугольной призмы ABCA1B1C1 . Прямые AB1 , BC и DA1 попарно перпендикулярны. Найдите высоту призмы, если AB = BC= AB1 =a .
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 379]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке