ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 4, угол между боковыми рёбрами
пирамиды равен arccos Окружность касается сторон угла ABC в точках A и C. Прямая BN пересекает эту окружность в точках M и N, а отрезок AC – в точке K, BM : MN = 3 : 5. Около окружности радиуса 3 описана равнобедренная трапеция ABCD (BC || AD), площадь которой равна 48. Окружность касается сторон AB и CD в точках K и L. Найдите KL. В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S? При повороте треугольника EFG на угол arccos ⅓ вокруг точки O, лежащей на стороне EG, вершина F переходит в вершину E, а вершина G – в точку H, лежащую на стороне FG. Найдите отношение, в котором точка O делит сторону EG. В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.
В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса
BD = 3 В треугольнике ABC AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что B1K || BC и MA1 || AC. Докажите, что ∠AA1K = ∠BB1M.
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 6, угол между боковым ребром и
плоскостью основания пирамиды равен arccos
В основании четырёхугольной пирамиды SABCD лежит ромб
ABCD с острым углом при вершине A . Высота ромба равна 4, точка
пересечения его диагоналей является ортогональной проекцией вершины
S на плоскость основания. Сфера радиуса 2 касается плоскостей всех
граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы
до прямой AC равно |
Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 540]
Сторона основания правильной четырёхугольной пирамиды равна a ,
апофема пирамиды равна
В правильной четырёхугольной пирамиде SABCD боковое ребро равно a
и равно диагонали основания ABCD . Через точку A параллельно прямой
BD проведена плоскость P , образующая с прямой AD угол, равный
arcsin
Основание прямой призмы KLMNK1L1M1N1 – ромб KLMN с углом 60o при вершине K . Точки E и F – середины рёбер LL1 и LM призмы. Ребро SA правильной четырёхугольной пирамиды SABCD ( S – вершина) лежит на прямой LN , вершины D и B – на прямых MM1 и EF соответственно. Найдите отношение объёмов призмы и пирамиды, если SA=2AB .
Точки E и F – середины рёбер CC1 и C1D1 прямоугольного параллелепипеда ABCDA1B1C1D1 . Ребро KL правильной треугольной пирамиды KLMN ( K – вершина) лежит на прямой AC , а вершины N и M – на прямых DD1 и EF соответственно. Найдите отношение объёмов призмы и пирамиды, если AB:BC=4:3 , KL:MN=2:3 .
Точки P и Q – середины рёбер KL и LM правильной треугольной призмы KLMK1L1M1 . Ребро SB правильной четырёхугольной пирамиды SABCD ( S – вершина) лежит на прямой QK , а вершины A и C – на прямых K1P и LL1 соответственно. Найдите отношение объёмов призмы и пирамиды, если SA=5AB .
Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 540]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке