ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана правильная треугольная пирамида SABC ( S – её вершина). Ребро SC этой пирамиды совпадает с боковым ребром правильной треугольной призмы A1B1CA2B2S ( A1A2 , B1B2 и CS – боковые рёбра, а A1B1C – одно из оснований). Вершины призмы A1 и B1 лежат в плоскости грани SAB пирамиды. Какую долю от объёма всей пирамиды составляет объём части пирамиды, лежащей внутри призмы, если отношение длины бокового ребра призмы к длине стороны её основания равно .

   Решение

Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 538]      



Задача 111375

Темы:   [ Отношение объемов ]
[ Правильная пирамида ]
[ Куб ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду вписан куб так, что одно ребро куба лежит на средней линии основания пирамиды; вершины куба, не принадлежащие этому ребру, лежат на боковой поверхности пирамиды; центр куба лежит на высоте пирамиды. Найдите отношение объёма пирамиды к объёму куба.
Прислать комментарий     Решение


Задача 111376

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD сторона основания ABCD равна a , высота равна 2a . Через вершину A параллельно диагонали BD основания проведена плоскость так, что угол между прямой AB и этой плоскостью равен 30o . Найдите площадь сечения
Прислать комментарий     Решение


Задача 111382

Темы:   [ Отношение объемов ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

Дана правильная треугольная пирамида SABC ( S – её вершина). Ребро SC этой пирамиды совпадает с боковым ребром правильной треугольной призмы A1B1CA2B2S ( A1A2 , B1B2 и CS – боковые рёбра, а A1B1C – одно из оснований). Вершины призмы A1 и B1 лежат в плоскости грани SAB пирамиды. Какую долю от объёма всей пирамиды составляет объём части пирамиды, лежащей внутри призмы, если отношение длины бокового ребра призмы к длине стороны её основания равно .
Прислать комментарий     Решение


Задача 111383

Темы:   [ Отношение объемов ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

Дана правильная треугольная пирамида SABC ( S – её вершина), сторона основания которой равна 2a . Ребро SA этой пирамиды совпадает с боковым ребром правильной треугольной призмы AB1C1SB2C2 ( AS , B1B2 и C1C2 – боковые рёбра призмы, а AB1C1 – одно из оснований). Вершины B1 и C1 призмы лежат в плоскости грани SBС пирамиды. Плоскость основания призмы ABC пирамиды рассекает призму на две равные по объёму части. Найдите объём призмы.
Прислать комментарий     Решение


Задача 111423

Темы:   [ Углы между прямыми и плоскостями ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде сторона основания равна a , угол между апофемой и боковой гранью равен . Найдите высоту пирамиды.
Прислать комментарий     Решение


Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .