Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 329]
Даны два одинаковых пересекающихся круга. Отношение расстояния
между их центрами к радиусу равно
2
m . Третий круг касается
внешним образом первых двух и их общей касательной. Найдите
отношение площади общей части первых двух кругов к площади
третьего круга.
|
|
Сложность: 3 Классы: 9,10,11
|
Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.
Для выпуклого четырёхугольника
ABCD соблюдено условие:
AB +
CD =
BC +
DA.
Докажите, что окружность, вписанная в
ABC, касается окружности,
вписанной в
ACD.
|
|
Сложность: 3 Классы: 9,10,11
|
Внутри правильного n-угольника со стороной a вписано n
равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов.
Круг вписан в круговой сектор с углом
2
α .
Найдите отношение площади сектора к площади круга.
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 329]