ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Отрезки AB и CD не параллельны и не пересекаются. Точка P лежит на отрезке AB, а точка Q – на отрезке CD. Точки K, L, M и N – середины отрезков AQ, BQ, CP и DP соответственно. Докажите, что отрезки KL, MN и PQ пересекаются в одной точке. Решение |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 330]
В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.
Отрезки AB и CD не параллельны и не пересекаются. Точка P лежит на отрезке AB, а точка Q – на отрезке CD. Точки K, L, M и N – середины отрезков AQ, BQ, CP и DP соответственно. Докажите, что отрезки KL, MN и PQ пересекаются в одной точке.
Вписанная окружность касается сторон AB и AC треугольника ABC в точках X и Y соответственно. Точка K– середина дуги AB описанной окружности треугольника ABC (не содержащей точки C). Оказалось, что прямая XY делит отрезок AK пополам. Чему может быть равен угол BAC?
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 330] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|