Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Вниз   Решение


В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠B = 90°)  проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что  OB1 = OB2.

ВверхВниз   Решение


Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


ВверхВниз   Решение


В остроугольном треугольнике KLN высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла K пересекает отрезок OH в такой точке M, что OM : MH = 3 : 1. Найдите площадь треугольника KLN, если LN = 4, а разность углов L и N равна 30o.

ВверхВниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

ВверхВниз   Решение


Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

ВверхВниз   Решение


Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 56628

Тема:   [ Точка Микеля ]
Сложность: 4
Классы: 8,9

Четыре прямые образуют четыре треугольника.
а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля).
б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля.
Прислать комментарий     Решение


Задача 111598

Темы:   [ Точка Микеля ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Медиана, проведенная к гипотенузе ]
[ Общая касательная к двум окружностям ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

Прислать комментарий     Решение

Задача 53300

Темы:   [ Точка Микеля ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56629

Тема:   [ Точка Микеля ]
Сложность: 5
Классы: 8,9

Прямая пересекает стороны AB, BC и CA треугольника (или их продолжения) в точках C1, B1 и A1O, Oa, Ob и Oc — центры описанных окружностей треугольников  ABC, AB1C1, A1BC1 и A1B1CH, Ha, Hb и Hc — ортоцентры этих треугольников. Докажите, что:
а)  $ \triangle$OaObOc $ \sim$ $ \triangle$ABC.
б) серединные перпендикуляры к отрезкам  OH, OaHa, ObHb и OcHc пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56630

Тема:   [ Точка Микеля ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписанный. Докажите, что точка Микеля для прямых, содержащих его стороны, лежит на отрезке, соединяющем точки пересечения продолжений сторон.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .