ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.

   Решение

Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1221]      



Задача 109592

Темы:   [ Уравнения высших степеней (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что уравнение  cx5 + bx + a = 0  также имеет три различных корня.

Прислать комментарий     Решение

Задача 110089

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Итерации ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение  P(P(x)) = 0  имеет не меньше различных действительных корней, чем уравнение  P(x) = 0.

Прислать комментарий     Решение

Задача 110139

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?

Прислать комментарий     Решение

Задача 111355

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 10,11

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Задача 111648

Темы:   [ Раскладки и разбиения ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 10,11

У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.

Прислать комментарий     Решение

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .