ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана неравнобокая трапеция ABCD. Точка A1 – это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.

   Решение

Задачи

Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 829]      



Задача 108079

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Элементарные (основные) построения циркулем и линейкой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям:  l || BC,  l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.

Прислать комментарий     Решение

Задача 108228

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 7,8,9

В четырёхугольнике ABCD углы A и C равны. Биссектриса угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.

Прислать комментарий     Решение

Задача 111692

Темы:   [ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10,11

Дана неравнобокая трапеция ABCD. Точка A1 – это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.

Прислать комментарий     Решение

Задача 111803

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9,10

На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что  MC = AC  и  NB = AB.  Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.

Прислать комментарий     Решение

Задача 115316

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.

Прислать комментарий     Решение

Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .