ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC, |
Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 829]
Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям: l || BC, l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.
В четырёхугольнике ABCD углы A и C равны. Биссектриса угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.
Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC,
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|