Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC угол B равен 60o , а высоты CE и AD пересекаются в точке O . Докажите, что центр описанной окружности треугольника ABC лежит на общей биссектрисе углов AOE и COD .

Вниз   Решение


Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В.

ВверхВниз   Решение


В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.

ВверхВниз   Решение


В треугольнике ABC сторона AC равна 4, а сторона BC равна $ {\frac{8}{\sqrt{2}}}$. Найдите площадь треугольника ABC, если известно, что угол ABC равен 45o.

ВверхВниз   Решение


Сфера вписана в правильную треугольную пирамиду SABC ( S – вершина), а также вписана в прямую треугольную призму KLMK1L1M1 , у которой KL=KM= , а боковое ребро KK1 лежит на прямой AB . Найдите радиус сферы, если известно, что прямая SC параллельна плоскости LL1M1M .

ВверхВниз   Решение


В треугольнике DEF угол DEF равен 60o. Найдите площадь треугольника DEF, если известно, что DF = 3, EF = $ {\frac{6}{\sqrt{3}}}$.

ВверхВниз   Решение


Тупой угол со сторонами, длины которых равны 3 и 6, вписан в окружность радиуса $ \sqrt{21}$. Определите величину дуги, на которую он опирается.

ВверхВниз   Решение


Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником?

ВверхВниз   Решение


Из точки D окружности S опущен перпендикуляр DC на диаметр AB . Окружность S1 касается отрезка CA в точке E , а также отрезка CD и окружности S . Докажите, что DE — биссектриса треугольника ADC .

ВверхВниз   Решение


Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.

ВверхВниз   Решение


Расстояния до вершин квадрата. Могут ли расстояния от некоторой точки на плоскости до вершин некоторого квадрата быть равными 1, 4, 7 и 8?

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Для произвольной прямой l обозначим через la, lb, lc прямые, симметричные l относительно сторон треугольника, а через Il – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек Il.

ВверхВниз   Решение


Дана четырёхугольная пирамида, в которую можно вписать сферу, причём центр этой сферы лежит на высоте пирамиды. Докажите, что в основания пирамиды можно вписать окружность.

ВверхВниз   Решение


Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 125]      



Задача 67253

Темы:   [ Радикальная ось ]
[ Прямая Эйлера и окружность девяти точек ]
[ Прямая Симсона ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5
Классы: 9,10,11

Автор: Шатунов Л.

Дан треугольник $ABC$ и окружности $\omega_1$, $\omega_2$, $\omega_3$, $\omega_4$ с центрами $X$, $Y$, $Z$, $T$ соответственно такие, что каждая из прямых $BC$, $CA$, $AB$ высекает на них четыре равных отрезка. Докажите, что точка пересечения медиан треугольника $ABC$ делит отрезок с концами в $X$ и радикальном центре $\omega_2$, $\omega_3$, $\omega_4$ в отношении $2:1$, считая от $X$.
Прислать комментарий     Решение


Задача 111721

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Гомотетичные окружности ]
[ Композиции гомотетий ]
[ Гомотетия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 9,10

Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .
Прислать комментарий     Решение


Задача 110780

Темы:   [ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
Сложность: 5+
Классы: 9,10,11

Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.
Прислать комментарий     Решение


Задача 56728

Тема:   [ Радикальная ось ]
Сложность: 6
Классы: 9

а) В треугольнике ABC проведены высоты AA1, BB1 и CC1. Прямые AB и A1B1BC и B1C1CA и C1A1 пересекаются в точках C', A' и B'. Докажите, что точки A', B' и C' лежат на радикальной оси окружности девяти точек и описанной окружности.
б) Биссектрисы внешних углов треугольника ABC пересекают продолжения противоположных сторон в точках A', B' и C'. Докажите, что точки A', B' и C' лежат на одной прямой, причем эта прямая перпендикулярна прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.
Прислать комментарий     Решение


Задача 56729

 [Теорема Брианшона]
Темы:   [ Радикальная ось ]
[ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
Сложность: 6
Классы: 8,9,10

Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .