ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 73871

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Произвольные многоугольники ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4+
Классы: 8,9,10

Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Прислать комментарий     Решение


Задача 111726

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные подобные треугольники ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенства для элементов треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Применение тригонометрических формул (геометрия) ]
[ Возрастание и убывание. Исследование функций ]
[ Доказательство от противного ]
Сложность: 5+
Классы: 8,9,10,11

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

Прислать комментарий     Решение

Задача 35480

Темы:   [ Системы точек ]
[ Проекция на прямую (прочее) ]
Сложность: 3-
Классы: 8,9

На плоскости дано 300 точек, никакие 3 которых не лежат на одной прямой. Докажите, что существует 100 попарно не пересекающихся треугольников с вершинами в этих точках.
Прислать комментарий     Решение


Задача 66771

Темы:   [ Хорды и секущие (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3
Классы: 8,9,10,11

Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, что отрезки $A_0C_0$ и $B_0D_0$ равны.
Прислать комментарий     Решение


Задача 108062

Темы:   [ Ортоцентр и ортотреугольник ]
[ Ортогональная (прямоугольная) проекция ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Сторона AB треугольника ABC равна c. На стороне AB взята такая точка M, что  ∠CMA = φ.
Найдите расстояние между ортоцентрами треугольников AMC и BMC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .